Think In Geek

In geek we trust

pi

ARM assembler in Raspberry Pi – Chapter 25

In chapter 13 we saw VFPv2 and the fact that it allows vectorial operations on floating-point numbers. You may be wondering if such a similar feature exists for integers. The answer is yes although in a more limited way.

, , ,

ARM assembler in Raspberry Pi – Chapter 12

We saw in chapter 6 some simple schemes to implement usual structured programming constructs like if-then-else and loops. In this chapter we will revisit these constructs and exploit a feature of the ARM instruction set that we have not learnt yet.

, , ,

ARM assembler in Raspberry Pi – Chapter 11

Several times, in earlier chapters, I stated that the ARM architecture was designed with the embedded world in mind. Although the cost of the memory is everyday lower, it still may account as an important part of the budget of an embedded system. The ARM instruction set has several features meant to reduce the impact […]

, , , , , , , ,

ARM assembler in Raspberry Pi – Chapter 10

In chapter 9 we were introduced to functions and we saw that they have to follow a number of conventions in order to play nice with other functions. We also briefly mentioned the stack, as an area of memory owned solely by the function. In this chapter we will go in depth with the stack […]

, , , , , , ,

ARM assembler in Raspberry Pi – Chapter 9

In previous chapters we learnt the foundations of ARM assembler: registers, some arithmetic operations, loads and stores and branches. Now it is time to put everything together and add another level of abstraction to our assembler skills: functions.

, , , , , ,

ARM assembler in Raspberry Pi – Chapter 8

In the previous chapter we saw that the second operand of most arithmetic instructions can use a shift operator which allows us to shift and rotate bits. In this chapter we will continue learning the available indexing modes of ARM instructions. This time we will focus on load and store instructions.

, , , , , , ,

ARM assembler in Raspberry Pi – Chapter 7

ARM architecture has been for long targeted at embedded systems. Embedded systems usually end being used in massively manufactured products (dishwashers, mobile phones, TV sets, etc). In this context margins are very tight so a designer will always try to spare as much components as possible (a cent saved in hundreds of thousands or even […]

, , , ,

ARM assembler in Raspberry Pi – Chapter 6

Control structures In the previous chapter we learnt branch instructions. They are really powerful tools because they allow us to express control structures. Structured programming is an important milestone in better computing engineering (a foundational one, but nonetheless an important one). So being able to map usual structured programming constructs in assembler, in our processor, […]

, , , ,

ARM assembler in Raspberry Pi – Chapter 5

Branching Until now our small assembler programs execute one instruction after the other. If our ARM processor were only able to run this way it would be of limited use. It could not react to existing conditions which may require different sequences of instructions. This is the purpose of the branch instructions.

, , , ,

ARM assembler in Raspberry Pi – Chapter 4

As we advance learning the foundations of ARM assembler, our examples will become longer. Since it is easy to make mistakes, I think it is worth learning how to use GNU Debugger gdb to debug assembler. If you develop C/C++ in Linux and never used gdb, shame on you. If you know gdb this small […]

, , , , ,

Previous Posts